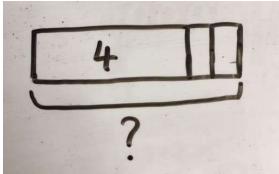
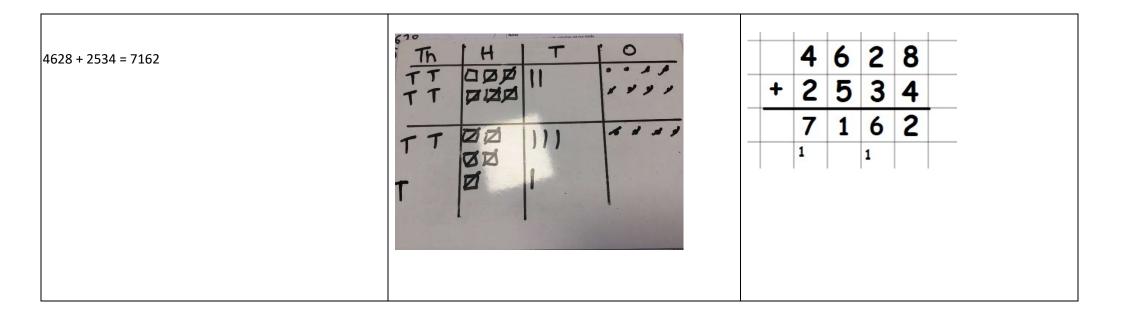

Calculation policy: Addition


Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

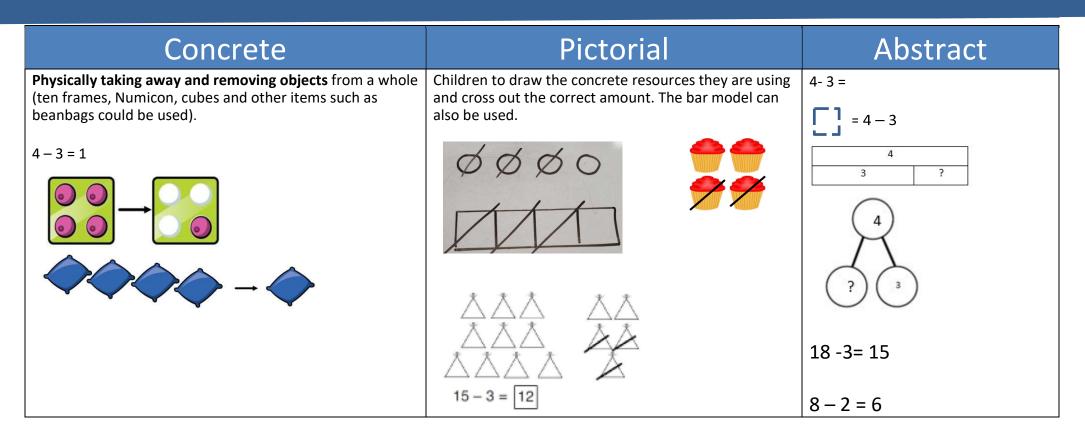
Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.

Counting on using number lines using cubes or Numicon.

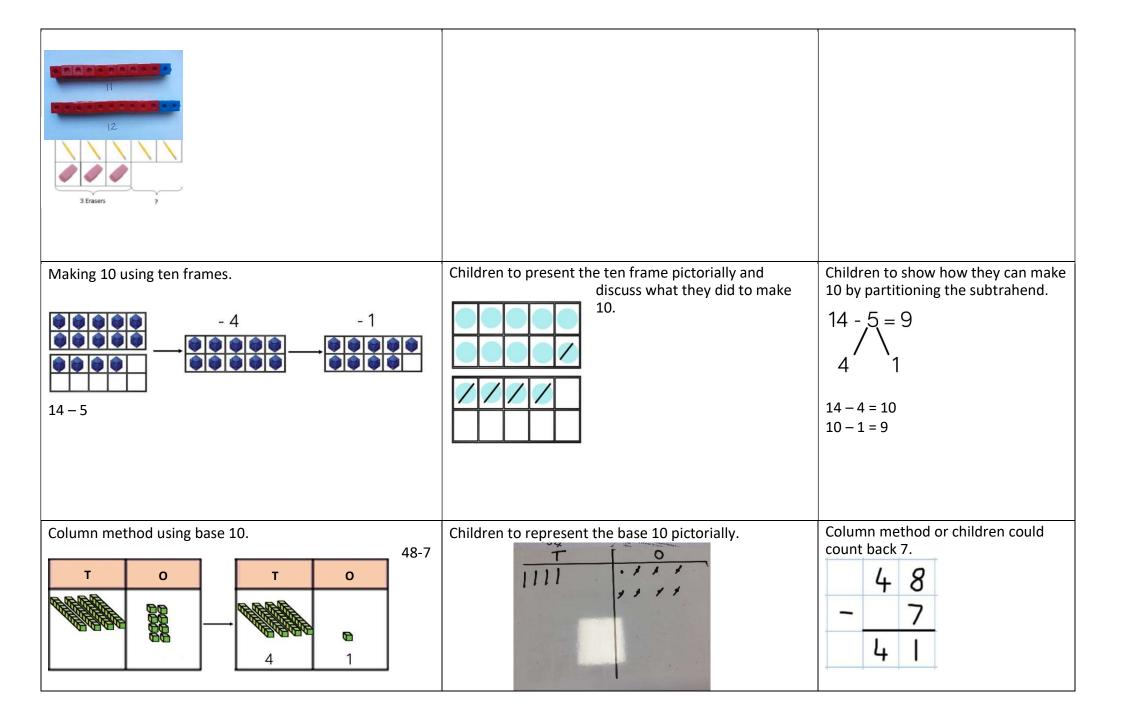
A bar model which encourages the children to count on, rather than count all.

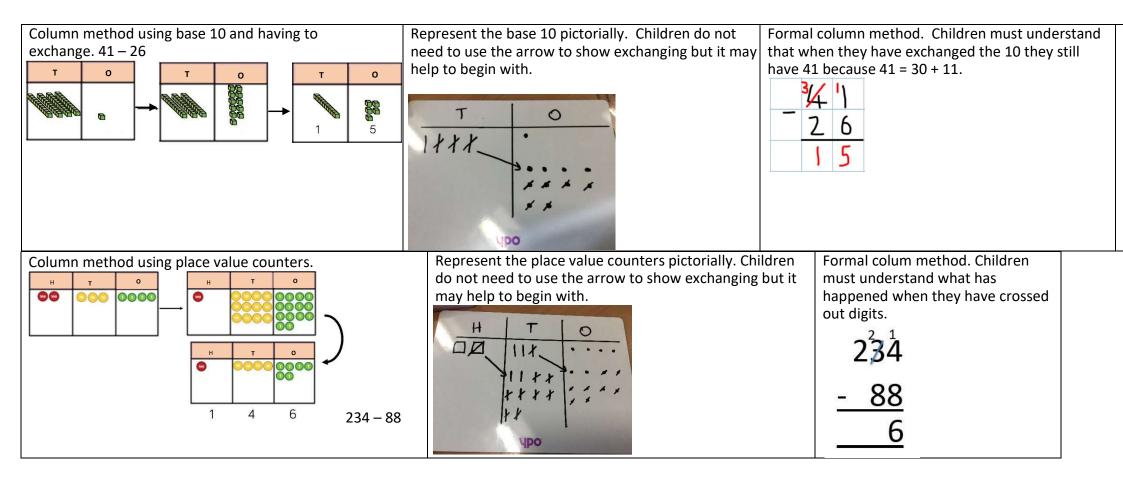


The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2


Regrouping to make 10 ; using ten frames and counters/cubes or using Numicon.	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g.
6+5	3 + 9 =	9 + 5 = 14 $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+4$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$
COCCCCCCCC		6 + 🗆 = 11
		6 + 5 = 5 + 🗆
	6 + 5	6 + 5 = □ + 4
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 as lines for tens and dots for ones. $\frac{T}{ }$	$ \begin{array}{c} 41 + 8 \\ 41 \\ 41 \\ 41 \\ 40 + 9 = 49 \end{array} $
		$\begin{pmatrix} 40 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ + \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$


TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25	Children to represent the base 10 in a place value chart.	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 1 5 36 Formal method: $\frac{+25}{61}$ 1
Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred. $\begin{array}{c} H & T & O \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \end{array}$	Children to represent the counters in a place value chart.	$20 + 5$ $40 + 8$ $60 + 13 = 73$ 243 $\frac{+368}{611}$ $1 1$


Calculation policy: Subtraction


Key language: take away, less than, difference between, subtract, fewer, decrease.

Finding the difference (using cubes, Numicon or Cuisenaire	Children to draw the cubes/other concrete objects	Find the difference between 8 and 5.
rods, other objects can also be used).	which they have used or use the bar model to illustrate	
	what they need to calculate.	8 – 5, the
Calculate the difference between 8 and 5.	00000000	difference is
	00000	
		Children to explore why
		9 - 6 = 8 – 5 = 7 – 4 have
	8	the same difference.
	5	

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups

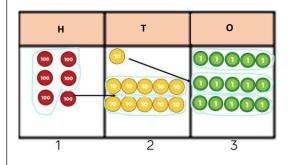
Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12

Number lines to show repeated groups-	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four.
	000010000100001	3 × 4 = 12
3 × 4		

Use arrays to illustrate commutativity counters and other objects can also be used.	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g.
$2 \times 5 = 5 \times 2$ $2 \text{ lots of } 5$ $5 \text{ lots of } 2$		$10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5

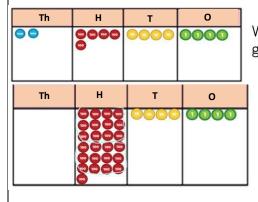
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ $20 \ 3 \ 60 + 9 = 69$ 23 $\frac{\times 3}{69}$

Formal column method with place value counters. 6 x 23	Children to represent the counters/base 10, pictorially e.g. the image below.	$6 \times 23 =$ 23 $\frac{\times 6}{138}$ $\frac{11}{11}$	Formal written method
When children start to multiply 3d × 3d and 4d × 2d etc.,	they should be confident with the abstract:	1 2 4 × 2 6	
To get 744 children have solved 6 × 124.		-/44 12 7-/80	
To get 2480 they have solved 20 × 124.		3 2 2 4 1 1	
		Answer: 3224	


Calculation policy: Division

Key language: share, group, divide, divided by, half.

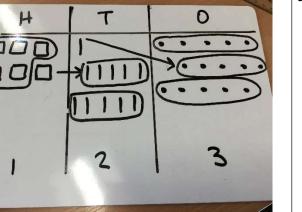
Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	6 ÷ 2 = 3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted. $ \begin{array}{r} -2 & -2 & -2 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 3 & groups \\ \end{array} $


 2d ÷ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. 13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over. 	Children to represent the lollipop sticks pictorially.	13 ÷ 4 – 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' 4 4 4 5 9 13
Sharing using place value counters. $42 \div 3 = 14$	Children to represent the place value counters pictorially. 42 + 11 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Children to be able to make sense of the place value counters and write calculations to show the process. $42 \div 3$ 42 = 30 + 12 $30 \div 3 = 10$ $12 \div 3 = 4$ 10 + 4 = 14

Short division using place value counters to group. 615 ÷ 5

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters $2544 \div 12$



We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

Children to the calculation using the short division scaffold.

Represent the place value counters pictorially.

Th H T O	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. 14
	After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 24 into 2 group of 12, which leaves no remainder. 14 12 24 0